metal-organic compounds

 $\beta = 96.864 \ (1)^{\circ}$ $\gamma = 104.323 \ (1)^{\circ}$

Z = 2

V = 4256.2 (3) Å³

Mo $K\alpha$ radiation

 $0.60 \times 0.30 \times 0.30$ mm

40567 measured reflections

25801 independent reflections

20379 reflections with $I > 2\sigma(I)$

 $\mu = 0.56 \text{ mm}^{-1}$

T = 120 K

 $R_{\rm int} = 0.016$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Crystallographic coincidence of two bridging species in a dinuclear Co^{III} ethynylbenzene complex

Wesley A. Hoffert and Matthew P. Shores*

Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA

Correspondence e-mail: matthew.shores@colostate.edu

Received 20 April 2011; accepted 25 May 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 25.8.

In the title compound, *trans,trans-*[μ -(*m*-phenylene)bis-(ethyne-1,2-diyl)]bis[chlorido(1,4,8,11-tetraazacyclotetradecane)cobalt(III)]–*trans,trans-*[μ -(5-bromo-*m*-phenylene)bis-(ethyne-1,2-diyl)]bis[chlorido(1,4,8,11-tetraazacyclotetradecane)cobalt(III)]–tetraphenylborate–acetone (0.88/0.12/2/4), [Co₂(C₁₂H₄)Cl₂(C₁₀H₂₄N₄)₂]_{0.88}[Co₂(C₁₀H₃Br)Cl₂(C₁₀H₂₄-N₄)₂]_{0.12}(C₂₄H₂₀B)₂·4C₃H₆O, with the exception of the acetylene and bromine groups, all atomic postitions are the same in the two compounds and are modeled at full occupancy. The Co^{III} ions are six-coordinate with acetylide and chloride ligands bound to the axial sites and the N atoms from the cyclam rings coordinated at the equatorial positions. N– H···O and N–H···Cl hydrogen-bonding interactions help to consolidate the crystal packing.

Related literature

Metallodendrimers are of interest for their unique catalytic and optical properties, see: Mery & Astruc (2006); Onitsuka & Takahashi (2003). For Pt(II)- and Ru(II)-containing dendrimers based on a 1,3,5-triethynylbenzene (H₃TEB) linkage, see: Onitsuka *et al.* (2004); McDonagh *et al.* (2003). For a discussion of the structural similarity between halogen and ethynyl substituents, see: Robinson *et al.* (1998). For related metal-acetylide structures, see: Weyland *et al.* (1998); Onitsuka *et al.* (2004). For the structure of [(cyclam)CoCl₂]Cl, see: Ivaniková *et al.* (2006). For the preparation of *trans*-[(cyclam)CoCl₂]Cl, see: Bosnich *et al.* (1965). General Sonogashira conditions were used to prepare a mixture of 1,3,5triethynylbenzene and 1-bromo-3,5-diethynylbenzene (Weber *et al.*, 1988).

Experimental

Crystal data

$$\begin{split} & [\text{Co}_2(\text{C}_{12}\text{H}_4)\text{Cl}_2(\text{C}_{10}\text{H}_{24}\text{N}_4)_2]_{0.88^-} \\ & [\text{Co}_2(\text{C}_{10}\text{H}_3\text{Br})\text{Cl}_2(\text{C}_{10}\text{H}_{24^-} \\ & \text{N}_4)_2]_{0.12} \cdot (\text{C}_{24}\text{H}_{20}\text{B})_2 \cdot 4\text{C}_3\text{H}_6\text{O} \\ & M_r = 1614.61 \\ & \text{Triclinic}, P\overline{1} \\ & a = 10.1434 \text{ (4) } \text{\AA} \\ & b = 17.1412 \text{ (7) } \text{\AA} \\ & c = 25.5250 \text{ (11) } \text{\AA} \\ & a = 92.609 \text{ (1)}^\circ \end{split}$$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min} = 0.729, T_{\rm max} = 0.850$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	1001 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
25801 reflections	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5\cdots Cl2^{i}$	0.93	2.48	3.2377 (12)	139
N6−H6···O3	0.93	2.15	2.9440 (19)	143
$N7 - H7 \cdots O2$	0.93	2.11	2.9894 (17)	157
$N8 - H8 \cdots O1$	0.93	2.03	2.8730 (17)	149

Symmetry code: (i) -x + 2, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors wish to thank Colorado State University and the ACS Petroleum Research Fund for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2008).

References

Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). *Inorg. Chem.* 4, 1102–1108. Bruker (2009). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.

Ivaniková, R., Svoboda, I., Fuess, H. & Mašlejová, A. (2006). Acta Cryst. E62, m1553–m1554.

- McDonagh, A. M., Powell, C. E., Morall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413.
- Mery, D. & Astruc, D. (2006). Coord. Chem. Rev. 250, 1965-1979.
- Onitsuka, K., Fujimoto, M., Kitajima, H., Ohshiro, N., Takei, F. & Takahashi, S. (2004). Chem. Eur. J. 10, 6433–6446.
- Onitsuka, K. & Takahashi, S. (2003). Top. Curr. Chem. 228, 39-63.
- Robinson, J. M. A., Kariuki, B. M., Harris, K. D. M. & Philp, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2459–2470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Weber, E., Hecker, M., Koepp, E., Orlia, W., Czugler, M. & Csöregh, I. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1251–1257.
- Weyland, T., Costuas, K., Mari, A., Halet, J.-F. & Lapinte, C. (1998). Organometallics, **17**, 5569–5579.

Acta Cryst. (2011). E67, m853-m854 [doi:10.1107/S1600536811019969]

Crystallographic coincidence of two bridging species in a dinuclear Co^{III} ethynylbenzene complex

W. A. Hoffert and M. P. Shores

Comment

From a technological standpoint, metallodendrimers are of interest for their unique catalytic and optical properties (Mery & Astruc, 2006; Onitsuka & Takahashi, 2003). A particular subset of metallodendrimers based on ethynylbenzene have been pursued because of their structural rigidity and topological anisotropy. Although a variety of Pt(II)- and Ru(II)-containing dendrimers based on a 1,3,5-triethynylbenzene (H₃TEB) linkage have been reported (Onitsuka *et al.*, 2004; McDonagh *et al.*, 2003), we are interested in the properties of first row transition metal TEB complexes for potential applications in molecular magnetism (Weyland *et al.*, 1998). For elaboration to higher nuclearity species, the inclusion of an axially coordinated anionic ligand that is poized for substitution is vital.

The synthesis of these macromolecules can be accomplished by divergent or convergent pathways; regardlesss, each strategy hinges upon the isolation of structurally characterized "building blocks" prior to dendrimer assembly. The preparation of complexes that contain first-row metals is synthetically challenging because of their high kinetic lability relative to their second and third row counterparts. In that respect, our initial synthetic targets contain Co^{III} because of its relative inertness.

The combination of H₃TEB with two equivalents of *trans*-[(cyclam)CoCl₂]Cl produces the dinuclear Co^{III} arylacetylide-bridged complex **1** in good yield (Figure 1). Initial refinement attempts on high quality X-ray data did not converge satisfactorily, as the third aromatic substituent showed apparent disorder of the alkynyl group. However, structure refinement proceeds smoothly if compositional disorder is invoked. The accepted method for the preparation of 1,3,5-triethynylbenzene involves Sonogashira coupling between 1,3,5-tribromobenzene and trimethylsilylacetylene (Weber *et al.*, 1988). On one occasion, following the protocol resulted in a batch of TEB containing a sizeable amount of 1-bromo-3,5-diethynylbenzene (Robinson *et al.*, 1998), indicating incomplete substitution. The impurity was carried through several purification steps, eventually affording a mixture of the ethynyl- (**1**) and bromo- (**2**) substituted complexes. The crystal structure revealed that both components of the ligand mixture were incorporated into metal complexes and the atomic sites were superimposed. During structure refinement, the compositional disorder at the aromatic 1 position was modeled with a free variable. Final site occupancy factors indicate that the two ligand components are present in an 88:12 **1**:**2** ratio. This compares favorably with subsequent ¹H NMR analysis of the batch of "H₃TEB" ligand, which shows resonance integrations in an 87:13 H₃TEB:H₂BrTEB ratio.

The molecular structure of the complex cations in **1** and **2** are shown in Figure 1. Each pseudo-octahedral Co^{III} center coordinates four nitrogen atoms from the cyclam rings at the equitorial positions with an average Co—N bond length of 1.9767 (11) Å, which is only slightly longer than the corresponding bond length from the reported structure of *trans*-[(cyclam)CoCl₂]Cl (1.9741 (12); Ivaniková *et al.*, 2006). Anionic chloride and acetylide ligands occupy the axial Co^{III} coordination sites with average metal-ligand distances of 2.3076 (4) and 1.8770 (14) respectively. The former bond length is significantly longer than the average Co—Cl distance in *trans*-[(cyclam)CoCl₂]Cl, suggesting that the arylacetylide ligand

imparts a stronger *trans* influence than chloride. The cationic charge is balanced by the presence of two tetraphenylborate anions, and the asymmetric unit includes four molecules of acetone.

Shown in Figure 2, the crystal packing in 1 and 2 is influenced by several weak hydrogen bonding interactions. Notably, the complex cations experience a dimeric interaction through pairwise N—H…Cl contacts with a complex in a neighboring unit cell. Furthermore, three of the four acetone molecules participate in hydrogen bonds through the cyclam N–H groups.

In summary, a mixture of H_3TEB and 1-bromo-3,5-diethynylbenzene combined with *trans*-[(cyclam)CoCl₂]Cl to yield a co-crystallized mixture of **1** and **2**. The compounds are superimposed in the solid state with the exception of the 5-position acetylene and bromine groups. Using a free variable to model the compositional disorder, we conclude that the two compounds are present in a 88:12 ratio. The first coordination sphere for each Co^{III} ion includes an axially replaceable chloride ligand, which is a necessary condition for future metallodendrimer assembly. This result exemplifies the key role of crystallographic analysis in organometallic synthesis development.

Experimental

trans-[(cyclam)CoCl₂]Cl was prepared by a previously descibed method (Bosnich *et al.* 1965). General Sonogashira conditions were used to prepare a mixture of 1,3,5-triethynylbenzene and 1-bromo-3,5-diethynylbenzene (Weber *et al.*, 1988). Triethylamine was purchased from Sigma-Aldrich and was distilled prior to use.

Elemental analysis was performed by Robertson Microlit in Madison, NJ.

Preparation of **1** and **2**: Triethylamine (0.34 ml, 2.42 mmol) was added to a 100 ml round-bottomed flask containing a green methanolic (10 ml) solution of [(cyclam)CoCl₂]Cl (233 mg, 0.637 mmol) and freshly sublimed mixture (45.5 mg) of 1,3,5-triethynylbenzene (87% by ¹H NMR) and 1-bromo-3,5-diethynylbenzene (13% by ¹H NMR). The flask was fitted with a condenser tube and the solution was refluxed for 24 h, during which time the solution turned orange-brown. The solvent was removed by rotary evaporation, and the resulting red-brown residue was washed with 10 ml of absolute ethanol, causing an orange solid to precipitate. The solid was isolated by filtration, washed with ethanol (3 × 3 ml) and diethyl ether (3 × 3 ml) and dried in air to afford 92.1 mg of an orange solid. The orange solid was dissolved in methanol (10 ml) and a solution of excess sodium tetraphenylborate in methanol (5 ml) was added, causing a salmon-colored solid to precipitate. The solid was isolated by filtration, washed with methanol (3 × 3 ml) and diethyl ether (3 × 3 ml) and dried in air to afford 92.1 mg of an orange solid. The orange solid was dissolved in methanol (10 ml) and a solution of excess sodium tetraphenylborate in methanol (5 ml) was added, causing a salmon-colored solid to precipitate. The solid was isolated by filtration, washed with methanol (3 × 3 ml) and diethyl ether (3 × 3 ml) and dried in air to afford 131 mg of product (0.094 mmol, 30% based on [(cyclam)CoCl₂]Cl). Anal. Calcd. for C_{85.74}H_{103.87}B₂Br_{0.13}Cl₂Co₂N₈O₂: C, 68.68; H, 6.98; N, 7.47. Found: C, 68.33; H, 7.02; N, 7.85. Single crystals suitable for X-ray analysis were grown by diffusing diethyl ether vapor into a concentrated solution of the compound in acetone for 2 days.

Refinement

Displacement parameters for all non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to ideal positions and were refined using a riding model where the displacement parameters were set at 1.2 times those of the attached carbon or nitrogen atoms (1.5 times for methyl protons).

Figures

Fig. 1. Structure of the superimposed complex cations present in 1 and 2 with atomic numbering scheme and thermal ellipsoids rendered at 40° probability. Orange, green, blue, gray, and red ellipsoids represent cobalt, chlorine, nitrogen, carbon, and bromine atoms respectively. With the exception of the acetylenic hydrogen (H1A, represented by a gray shaded sphere), hydrogen atoms have been omitted for clarity.

Fig. 2. Hydrogen bonding interactions present in the solid state structures of **1** and **2**. Thermal ellipsoids are rendered at 40% probability. Red ellipsoids represent oxygen atoms. Otherwise, the color scheme is identical to that found in Figure 1. Tetraphenylborate anions, the acetone molecule that includes O4 (which does not participate in H-bonding), the bromine substituent present in **2**, and hydrogen atoms that do not participate in H-bonding have been omitted.

 $trans, trans-[\mu-(m-phenylene)bis(ethyne-1,2-diyl)]bis[chlorido(1,4,8,11-tetraazacyclotetradecane)cobalt(III)]-trans, trans-[\mu-(5-bromo-m-phenylene)bis(ethyne-1,2-diyl)]bis[chlorido(1,4,8,11-tetraazacyclotetradecane)cobalt(III)]-tetraphenylborate-acetone (0.88/0.12/2/4)$

Crystal data

 $[Co_{2}(C_{12}H_{4})Cl_{2}(C_{10}H_{24}N_{4})_{2}]_{0.88}[Co_{2}(C_{10}H_{3}Br)Cl_{2}(C_{12}H_{22}N_{4})_{2}]_{0.12} \cdot (C_{24}H_{20}B)_{2} \cdot 4C_{3}H_{6}O_{12}(C_{12}H_{22}N_{4})_{2}]_{0.12} \cdot (C_{12}H_{22}N_{4})_{2}]_{0.12} \cdot (C_{12}H_{20}B)_{2} \cdot 4C_{3}H_{6}O_{12}(C_{12}H_{22}N_{4})_{2}]_{0.12} \cdot (C_{12}H_{20}B)_{2} \cdot 4C_{3}H_{6}O_{12}(C_{12}H_{22}N_{4})_{2}]_{0.12} \cdot (C_{12}H_{20}B)_{2} \cdot 4C_{3}H_{6}O_{12}(C_{12}H_{22}N_{4})_{2}]_{0.12} \cdot (C_{12}H_{20}B)_{2} \cdot 4C_{3}H_{6}O_{12}(C_{12}H_{22}N_{4})_{2}]_{0.12} \cdot (C_{12}H_{20}B)_{2} \cdot 4C_{3}H_{6}O_{12}(C_{12}H_{20}B)_{2} \cdot (C_{12}H_{20}B)_{2} \cdot (C_{12}H_{20}B)$ $M_r = 1614.61$ F(000) = 1711.8Triclinic, PT $D_{\rm x} = 1.260 {\rm Mg m}^{-3}$ Hall symbol: -P 1 Mo *K* α radiation, $\lambda = 0.71073$ Å a = 10.1434 (4) Å Cell parameters from 9660 reflections b = 17.1412 (7) Å $\theta = 2.1 - 33.1^{\circ}$ c = 25.5250 (11) Å $\mu = 0.56 \text{ mm}^{-1}$ T = 120 K $\alpha = 92.609 (1)^{\circ}$ $\beta = 96.864 (1)^{\circ}$ Block, orange $\gamma = 104.323 (1)^{\circ}$ $0.60\times0.30\times0.30~mm$ V = 4256.2 (3) Å³

Data collection

Bruker APEXII CCD area-detector diffractometer	25801 independent reflections
Radiation source: fine-focus sealed tube	20379 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.016$
φ and ω scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -14 \rightarrow 14$
$T_{\min} = 0.729, \ T_{\max} = 0.850$	$k = -24 \rightarrow 23$
40567 measured reflections	$l = -36 \rightarrow 35$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant di methods
Refinement on F^2	methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.097$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0448P)^2 + 1.6289P]$ where $P = (F_0^2 + 2F_c^2)/3$
25801 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
1001 parameters	$\Delta \rho_{max} = 0.52 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.42 \ e \ {\rm \AA}^{-3}$

Special details

Experimental. Although we cannot explain the source of the Hirshfield tests that give rise to the B– and C-level alerts, there is no evidence of substitutional disorder at the atomic sites mentioned in the alerts. The reason for the presence of a non-integer number of atoms is due to substitutional disorder between bromine and acetylene substituents as descibed in the text. Four reflections were omitted from refinement due to beamstop interference. Probable reasons for the missing cusp of data include beamstop interference and data truncation at resolutions higher than 0.70 Å during the initial stages of refinement. The low "solvent" U_{eq} in C88 C91 (the central C atoms in two of the acetone molecules) compared to neighboring atoms cannot be explained by substitutional disorder or incorrect atom type. However, we note that the differences in U_{eq} are relatively minor. The four D—H groups on the cyclam rings do not interact with acceptors. This has been checked and the exception is apparently common for N—H groups. One of the tetraphenylborate anions and one of the acetone molecules do not have their centers of gravity within the unit cell. Since neither molecule is the main species, there is no cause for alarm. The s.u. values for the unit cell angles have been checked, and the fact that all angles have the same s.u. is purely coincedental. The long C(sp2)-C(sp1) bonds noted for C5—C9 and C7—C11 appear to be real. Since these bonds include an aromatic carbon, this may be a false alarm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Co1	0.569900 (17)	0.158047 (10)	0.401709 (7)	0.01310 (4)	
Co2	0.839505 (18)	0.470946 (10)	0.098236 (7)	0.01540 (4)	
Cl1	0.42722 (3)	0.056323 (18)	0.439190 (13)	0.01862 (6)	
C12	0.78675 (3)	0.45872 (2)	0.006915 (13)	0.02340 (7)	
N1	0.72417 (11)	0.10677 (6)	0.41499 (4)	0.0158 (2)	
H1	0.7961	0.1377	0.3995	0.019*	
N2	0.50440 (11)	0.10322 (7)	0.33001 (4)	0.0173 (2)	
H2	0.5574	0.1342	0.3074	0.021*	
N3	0.63209 (11)	0.21325 (6)	0.47314 (4)	0.0163 (2)	
Н3	0.5739	0.1843	0.4950	0.020*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N4	0.41663 (11)	0.20999 (7)	0.38934 (4)	0.0170 (2)	
H4	0.3477	0.1818	0.4074	0.020*	
N5	1.03433 (12)	0.51527 (7)	0.09070 (5)	0.0187 (2)	
H5	1.0394	0.5099	0.0546	0.022*	
N6	0.85298 (12)	0.35773 (7)	0.09466 (5)	0.0208 (2)	
H6	0.8449	0.3419	0.0588	0.025*	
N7	0.64379 (12)	0.42663 (7)	0.10699 (5)	0.0215 (2)	
H7	0.6393	0.4324	0.1431	0.026*	
N8	0.82626 (12)	0.58398 (7)	0.10179 (5)	0.0202 (2)	
H8	0.8332	0.5997	0.1376	0.024*	
B1	1.27714 (15)	0.10990 (8)	0.14789 (6)	0.0172 (3)	
B2	0.21036 (15)	0.23378 (8)	0.57547 (6)	0.0156 (3)	
01	0.87863 (16)	0.68935 (8)	0.19688 (5)	0.0460 (3)	
02	0.54710 (14)	0.43689 (8)	0.21263 (5)	0.0436 (3)	
03	0.86420 (18)	0.24635 (10)	0.00500 (7)	0.0645 (5)	
O4	1.3523 (2)	0.69047 (12)	0.18809 (10)	0.1043 (8)	
C1	1.3457 (4)	0.50591 (15)	0.40696 (12)	0.0352 (6)	0.8771 (17)
H1A	1.4333	0.5262	0.4274	0.042*	0.8771 (17)
C2	1.2357 (3)	0.48043 (18)	0.38132 (13)	0.0226 (6)	0.8771 (17)
C3	1.10471 (13)	0.44906 (7)	0.35041 (5)	0.0168 (2)	
C4	1.00746 (13)	0.38761 (7)	0.36879 (5)	0.0166 (2)	
H4A	1.0280	0.3676	0.4021	0.020*	
C5	0.87944 (13)	0.35534 (7)	0.33824 (5)	0.0156 (2)	
C6	0.85153 (13)	0.38488 (7)	0.28917 (5)	0.0162 (2)	
H6A	0.7653	0.3627	0.2681	0.019*	
C7	0.94862 (13)	0.44665 (7)	0.27051 (5)	0.0156 (2)	
C8	1.07510 (13)	0.47938 (7)	0.30170 (5)	0.0169 (2)	
H8A	1.1409	0.5222	0.2898	0.020*	
С9	0.77736 (14)	0.29242 (8)	0.35681 (5)	0.0176 (2)	
C10	0.69030 (13)	0.24154 (8)	0.37286 (5)	0.0174 (2)	
C11	0.91742 (14)	0.47036 (8)	0.21806 (5)	0.0188 (3)	
C12	0.88563 (13)	0.47697 (8)	0.17195 (5)	0.0181 (2)	
C13	0.65879 (16)	0.01084 (9)	0.33459 (6)	0.0256 (3)	
H13A	0.6640	-0.0434	0.3214	0.031*	
H13B	0.7231	0.0513	0.3171	0.031*	
C14	0.51399 (15)	0.01905 (8)	0.31905 (6)	0.0237 (3)	
H14A	0.4855	0.0027	0.2808	0.028*	
H14B	0.4503	-0.0177	0.3390	0.028*	
C15	0.36217 (14)	0.11045 (9)	0.31500 (6)	0.0217 (3)	
H15A	0.2968	0.0710	0.3328	0.026*	
H15B	0 3354	0 1000	0 2762	0.026*	
C16	0.36136 (15)	0 19552 (9)	0.33246 (6)	0.0223(3)	
H16A	0.4190	0.2345	0.3118	0.027*	
H16B	0.2666	0.2022	0.3268	0.027*	
C17	0.44139 (14)	0.29657 (8)	0.40764 (6)	0.0209 (3)	
H17A	0 3556	0 3139	0 3992	0.025*	
H17B	0.5119	0 3294	0 3884	0.025*	
C18	0.48881 (14)	0.31183 (8)	0.46657 (6)	0.0214 (3)	
H18A	0 4215	0 2755	0 4854	0.026*	

H18B	0.4899	0.3681	0.4777	0.026*
C19	0.63025 (14)	0.29889 (8)	0.48330 (6)	0.0212 (3)
H19A	0.6977	0.3335	0.4636	0.025*
H19B	0.6581	0.3153	0.5215	0.025*
C20	0.77018 (14)	0.20181 (8)	0.49135 (6)	0.0209 (3)
H20A	0.7900	0.2099	0.5304	0.025*
H20B	0.8415	0.2413	0.4762	0.025*
C21	0.76967 (14)	0.11677 (8)	0.47297 (5)	0.0195 (3)
H21A	0.8628	0.1082	0.4807	0.023*
H21B	0.7059	0.0772	0.4912	0.023*
C22	0.70448 (14)	0.02212 (8)	0.39365 (6)	0.0208 (3)
H22A	0.6348	-0.0139	0.4117	0.025*
H22B	0.7919	0.0063	0.4014	0.025*
C23	0.95084 (16)	0.63438 (9)	0.08301 (6)	0.0252 (3)
H23A	0.9649	0.6918	0.0954	0.030*
H23B	0.9407	0.6298	0.0439	0.030*
C24	1.07054 (15)	0.60369 (8)	0.10543 (6)	0.0243 (3)
H24A	1.1543	0.6309	0.0906	0.029*
H24B	1.0879	0.6144	0.1444	0.029*
C25	1.13921 (14)	0.47734 (9)	0.11654 (6)	0.0240 (3)
H25A	1.1435	0.4848	0.1555	0.029*
H25B	1.2304	0.5044	0.1071	0.029*
C26	1.10616 (16)	0.38797 (10)	0.09968 (6)	0.0276 (3)
H26A	1.0930	0.3809	0.0605	0.033*
H26B	1.1857	0.3671	0.1127	0.033*
C27	0.97936 (16)	0.33818 (9)	0.11963 (6)	0.0259 (3)
H27A	0.9723	0.2801	0.1118	0.031*
H27B	0.9880	0.3487	0.1585	0.031*
C28	0.72867 (16)	0.30731 (9)	0.11401 (7)	0.0278 (3)
H28A	0.7401	0.3118	0.1532	0.033*
H28B	0.7140	0.2499	0.1015	0.033*
C29	0.60835 (16)	0.33832 (9)	0.09228 (7)	0.0279 (3)
H29A	0.5899	0.3277	0.0533	0.034*
H29B	0.5252	0.3109	0 1074	0.034*
C30	0.53936 (15)	0 46438 (10)	0.08077 (7)	0.0294 (3)
H30A	0.4482	0.4378	0.0904	0.035*
H30B	0.5348	0.4559	0.0419	0.035*
C31	0.57201 (17)	0.55400 (11)	0.09648 (7)	0.0325 (4)
H31A	0.5845	0.5623	0.1356	0.0323 (1)
H31B	0.4927	0.5746	0.0827	0.039*
C32	0.69956 (16)	0.60282(10)	0.07628 (7)	0.0291 (3)
H32A	0.6911	0.5912	0.0375	0.0251 (5)
H32R	0.7067	0.6611	0.0834	0.035*
C33	1 16400 (14)	0.02199 (8)	0.13641 (6)	0.0193 (3)
C34	1 15249 (15)	-0.03715(8)	0 17315 (6)	0.0175(3)
H34	1 2184	-0.0278	0 2040	0.0295 (9)
C35	1.2104	-0.10891 (9)	0.16644 (7)	0.020
H35	1.0451	-0 1471	0.1924	0.0255 (5)
C36	0.05161(17)	-0.12/20(0)	0.1727	0.0351 (4)
0.50	0.75101 (17)	0.12+30 (9)	0.12102 (0)	0.0331 (4)

H36	0.8801	-0.1728	0.1170	0.042*
C37	0.95980 (18)	-0.06811 (10)	0.08420 (8)	0.0368 (4)
H37	0.8941	-0.0782	0.0533	0.044*
C38	1.06453 (16)	0.00323 (9)	0.09168 (7)	0.0277 (3)
H38	1.0684	0.0407	0.0652	0.033*
C39	1.21641 (13)	0.16870 (8)	0.18652 (5)	0.0183 (2)
C40	1.10744 (14)	0.13930 (8)	0.21550 (6)	0.0214 (3)
H40	1.0669	0.0828	0.2130	0.026*
C41	1.05613 (15)	0.18934 (9)	0.24777 (6)	0.0252 (3)
H41	0.9828	0.1665	0.2668	0.030*
C42	1.11142 (15)	0.27216 (9)	0.25222 (6)	0.0261 (3)
H42	1.0766	0.3065	0.2740	0.031*
C43	1.21814 (16)	0.30364 (9)	0.22429 (6)	0.0258 (3)
H43	1.2568	0.3604	0.2267	0.031*
C44	1.26997 (15)	0.25332 (8)	0.19253 (6)	0.0221 (3)
H44	1.3443	0.2769	0.1742	0.027*
C45	1.42846 (14)	0.09960 (8)	0.17397 (5)	0.0181 (2)
C46	1.52986 (14)	0.16203 (8)	0.20381 (6)	0.0206 (3)
H46	1.5058	0.2097	0.2150	0.025*
C47	1.66472 (15)	0.15672 (9)	0.21771 (6)	0.0264 (3)
H47	1.7301	0.2003	0.2380	0.032*
C48	1.70339 (16)	0.08796 (10)	0.20199 (7)	0.0312 (3)
H48	1.7954	0.0845	0.2107	0.037*
C49	1.60600 (16)	0.02451 (10)	0.17341 (7)	0.0311 (3)
H49	1.6307	-0.0232	0.1628	0.037*
C50	1.47178 (15)	0.03053 (8)	0.16026 (6)	0.0245 (3)
H50	1.4064	-0.0142	0.1411	0.029*
C51	1.30157 (14)	0.15000 (7)	0.09106 (5)	0.0183 (2)
C52	1.22093 (15)	0.19872 (8)	0.06825 (6)	0.0237 (3)
H52	1.1524	0.2111	0.0871	0.028*
C53	1.23718 (17)	0.22961 (9)	0.01927 (6)	0.0293 (3)
Н53	1.1803	0.2624	0.0054	0.035*
C54	1.33574 (17)	0.21279 (9)	-0.00925 (6)	0.0290 (3)
H54	1.3480	0.2342	-0.0425	0.035*
C55	1.41599 (17)	0.16437 (10)	0.01146 (6)	0.0302 (3)
H55	1.4832	0.1517	-0.0079	0.036*
C56	1.39934 (15)	0.13410 (9)	0.06036 (6)	0.0249 (3)
H56	1.4565	0.1012	0.0737	0.030*
C57	0.12531 (13)	0.17868 (7)	0.61823 (5)	0.0161 (2)
C58	0.18508 (15)	0.16756 (9)	0.66888 (6)	0.0217 (3)
H58	0.2798	0.1926	0.6794	0.026*
C59	0.11139 (17)	0.12135 (9)	0.70445 (6)	0.0276 (3)
Н59	0.1564	0.1156	0.7384	0.033*
C60	-0.02683 (16)	0.08372 (9)	0.69081 (6)	0.0265 (3)
H60	-0.0769	0.0519	0.7149	0.032*
C61	-0.09077 (15)	0.09338 (8)	0.64126 (6)	0.0225 (3)
H61	-0.1857	0.0685	0.6312	0.027*
C62	-0.01504 (14)	0.13983 (8)	0.60623 (6)	0.0193 (3)
H62	-0.0609	0.1455	0.5725	0.023*

C63	0.15508 (12)	0.19151 (7)	0.51470 (5)	0.0147 (2)
C64	0.13326 (13)	0.10780 (7)	0.50289 (5)	0.0164 (2)
H64	0.1457	0.0752	0.5312	0.020*
C65	0.09449 (13)	0.07054 (8)	0.45201 (6)	0.0189 (3)
H65	0.0832	0.0140	0.4462	0.023*
C66	0.07204 (14)	0.11584 (8)	0.40941 (6)	0.0203 (3)
H66	0.0460	0.0909	0.3744	0.024*
C67	0.08858 (14)	0.19838 (8)	0.41920 (6)	0.0201 (3)
H67	0.0722	0.2301	0.3908	0.024*
C68	0.12925 (13)	0.23501 (8)	0.47066 (5)	0.0174 (2)
H68	0.1399	0.2915	0.4762	0.021*
C69	0.18314 (14)	0.32439 (7)	0.57628 (5)	0.0178 (2)
C70	0.05760 (15)	0.33885 (8)	0.58577 (6)	0.0231 (3)
H70	-0.0087	0.2968	0.5981	0.028*
C71	0.02615 (18)	0.41240 (10)	0.57785 (7)	0.0334 (4)
H71	-0.0606	0.4194	0.5845	0.040*
C72	0.1206 (2)	0.47546 (10)	0.56037 (7)	0.0386 (4)
H72	0.0993	0.5256	0.5546	0.046*
C73	0.2465 (2)	0.46410 (9)	0.55142 (7)	0.0358 (4)
H73	0.3130	0.5069	0.5399	0.043*
C74	0.27607 (16)	0.38996 (8)	0.55925 (6)	0.0262 (3)
H74	0.3633	0.3836	0.5527	0.031*
C75	0.37407 (13)	0.23679 (7)	0.59177 (5)	0.0170 (2)
C76	0.46187 (15)	0.29513 (9)	0.62896 (6)	0.0255 (3)
H76	0.4289	0.3385	0.6420	0.031*
C77	0.59527 (16)	0.29242 (10)	0.64763 (7)	0.0310 (3)
H77	0.6512	0.3338	0.6726	0.037*
C78	0.64713 (15)	0.22949 (9)	0.62999 (6)	0.0265 (3)
H78	0.7377	0.2271	0.6429	0.032*
C79	0.56393 (14)	0.17049 (8)	0.59322 (6)	0.0207 (3)
H79	0.5970	0.1267	0.5810	0.025*
C80	0.43166 (13)	0.17531 (7)	0.57407 (5)	0.0165 (2)
H80	0.3780	0.1352	0.5479	0.020*
C81	0.7888 (2)	0.63258 (11)	0.27193 (8)	0.0423 (4)
H81A	0.6998	0.6292	0.2510	0.063*
H81B	0.7945	0.6623	0.3062	0.063*
H81C	0.7985	0.5780	0.2777	0.063*
C82	0.90102 (18)	0.67547 (9)	0.24293 (7)	0.0303 (3)
C83	1.04117 (19)	0.70107 (12)	0.27313 (8)	0.0429 (4)
H83A	1.1091	0.7130	0.2484	0.064*
H83B	1.0579	0.6575	0.2945	0.064*
H83C	1.0490	0.7495	0.2964	0.064*
C84	0.5345 (2)	0.44214 (14)	0.30441 (8)	0.0484 (5)
H84A	0.5679	0.3932	0.3032	0.073*
H84B	0.4497	0.4315	0.3206	0.073*
H84C	0.6042	0.4859	0.3255	0.073*
C85	0.50690 (16)	0.46621 (10)	0.24968 (7)	0.0301 (3)
C86	0.42688 (18)	0.52871 (11)	0.24327 (8)	0.0384 (4)
H86A	0.4299	0.5478	0.2077	0.058*

H86B	0.4671	0.5743	0.2697	0.058*	
H86C	0.3313	0.5050	0.2482	0.058*	
C87	0.7971 (3)	0.10881 (17)	0.02143 (12)	0.0735 (8)	
H87A	0.8724	0.1227	0.0509	0.110*	
H87B	0.8046	0.0616	0.0000	0.110*	
H87C	0.7091	0.0965	0.0354	0.110*	
C88	0.8052 (2)	0.17801 (12)	-0.01189 (9)	0.0450 (5)	
C89	0.7376 (2)	0.16136 (14)	-0.06804 (9)	0.0539 (6)	
H89A	0.7317	0.2123	-0.0829	0.081*	
H89B	0.6450	0.1260	-0.0692	0.081*	
H89C	0.7917	0.1348	-0.0888	0.081*	
C90	1.5688 (4)	0.7675 (2)	0.17338 (18)	0.1143 (14)	
H90A	1.6321	0.7445	0.1960	0.171*	
H90B	1.6082	0.8257	0.1726	0.171*	
H90C	1.5539	0.7415	0.1374	0.171*	
C91	1.4373 (2)	0.75380 (12)	0.19444 (10)	0.0533 (6)	
C92	1.4179 (4)	0.82311 (16)	0.22727 (13)	0.0810 (9)	
H92A	1.3207	0.8141	0.2316	0.121*	
H92B	1.4472	0.8730	0.2097	0.121*	
H92C	1.4729	0.8279	0.2621	0.121*	
Br1	1.2806 (2)	0.49635 (14)	0.39366 (9)	0.0274 (7)	0.1229 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Co1	0.01090 (8)	0.01514 (7)	0.01354 (9)	0.00275 (6)	0.00258 (6)	0.00494 (6)
Co2	0.01629 (9)	0.01909 (8)	0.01086 (9)	0.00354 (6)	0.00324 (6)	0.00316 (6)
Cl1	0.01463 (14)	0.01972 (13)	0.02121 (16)	0.00177 (11)	0.00450 (12)	0.00756 (11)
C12	0.02111 (16)	0.03513 (17)	0.01254 (15)	0.00387 (13)	0.00314 (12)	0.00303 (12)
N1	0.0138 (5)	0.0186 (5)	0.0157 (5)	0.0043 (4)	0.0025 (4)	0.0045 (4)
N2	0.0155 (5)	0.0211 (5)	0.0154 (5)	0.0048 (4)	0.0015 (4)	0.0039 (4)
N3	0.0130 (5)	0.0194 (5)	0.0166 (6)	0.0033 (4)	0.0030 (4)	0.0036 (4)
N4	0.0141 (5)	0.0209 (5)	0.0176 (6)	0.0061 (4)	0.0034 (4)	0.0063 (4)
N5	0.0186 (5)	0.0240 (5)	0.0129 (5)	0.0038 (4)	0.0030 (4)	0.0030 (4)
N6	0.0246 (6)	0.0201 (5)	0.0181 (6)	0.0051 (4)	0.0054 (5)	0.0019 (4)
N7	0.0196 (6)	0.0270 (6)	0.0173 (6)	0.0036 (4)	0.0045 (5)	0.0020 (4)
N8	0.0244 (6)	0.0219 (5)	0.0159 (6)	0.0071 (4)	0.0049 (5)	0.0052 (4)
B1	0.0170 (7)	0.0165 (6)	0.0175 (7)	0.0038 (5)	0.0016 (5)	0.0006 (5)
B2	0.0143 (6)	0.0161 (6)	0.0166 (7)	0.0041 (5)	0.0026 (5)	0.0007 (5)
01	0.0724 (10)	0.0352 (6)	0.0257 (7)	0.0093 (6)	-0.0001 (6)	-0.0037 (5)
O2	0.0429 (7)	0.0486 (7)	0.0382 (7)	0.0023 (6)	0.0244 (6)	-0.0037 (6)
O3	0.0676 (11)	0.0562 (9)	0.0624 (11)	0.0088 (8)	0.0078 (8)	-0.0306 (8)
O4	0.0910 (15)	0.0516 (11)	0.139 (2)	-0.0102 (10)	-0.0482 (14)	0.0027 (12)
C1	0.0255 (13)	0.0393 (12)	0.0347 (14)	0.0008 (10)	-0.0039 (11)	0.0006 (9)
C2	0.0237 (16)	0.0235 (12)	0.0203 (15)	0.0048 (10)	0.0033 (10)	0.0035 (9)
C3	0.0169 (6)	0.0161 (5)	0.0172 (6)	0.0039 (4)	0.0029 (5)	0.0002 (4)
C4	0.0184 (6)	0.0175 (5)	0.0149 (6)	0.0055 (5)	0.0037 (5)	0.0037 (4)
C5	0.0170 (6)	0.0158 (5)	0.0157 (6)	0.0051 (4)	0.0064 (5)	0.0031 (4)

C6	0.0156 (6)	0.0177 (5)	0.0154 (6)	0.0031 (4)	0.0041 (5)	0.0027 (4)
C7	0.0194 (6)	0.0160 (5)	0.0130 (6)	0.0053 (4)	0.0054 (5)	0.0025 (4)
C8	0.0183 (6)	0.0162 (5)	0.0163 (6)	0.0024 (4)	0.0057 (5)	0.0027 (4)
С9	0.0188 (6)	0.0200 (6)	0.0154 (6)	0.0061 (5)	0.0036 (5)	0.0042 (5)
C10	0.0171 (6)	0.0197 (6)	0.0164 (6)	0.0070 (5)	0.0016 (5)	0.0024 (5)
C11	0.0200 (6)	0.0181 (5)	0.0185 (7)	0.0037 (5)	0.0055 (5)	0.0037 (5)
C12	0.0175 (6)	0.0182 (5)	0.0183 (7)	0.0032 (5)	0.0037 (5)	0.0035 (5)
C13	0.0266 (7)	0.0259 (7)	0.0260 (8)	0.0124 (6)	0.0005 (6)	-0.0034 (6)
C14	0.0255 (7)	0.0220 (6)	0.0227 (7)	0.0076 (5)	-0.0022 (6)	-0.0032 (5)
C15	0.0171 (6)	0.0283 (7)	0.0193 (7)	0.0065 (5)	-0.0013 (5)	0.0028 (5)
C16	0.0204 (6)	0.0295 (7)	0.0189 (7)	0.0104 (5)	-0.0001 (5)	0.0072 (5)
C17	0.0219 (7)	0.0189 (6)	0.0254 (7)	0.0087 (5)	0.0077 (5)	0.0075 (5)
C18	0.0230 (7)	0.0192 (6)	0.0245 (7)	0.0071 (5)	0.0084 (6)	0.0028 (5)
C19	0.0207 (6)	0.0197 (6)	0.0223 (7)	0.0032 (5)	0.0046 (5)	0.0000 (5)
C20	0.0145 (6)	0.0277 (6)	0.0194 (7)	0.0050 (5)	-0.0001 (5)	0.0001 (5)
C21	0.0159 (6)	0.0275 (6)	0.0163 (6)	0.0079 (5)	0.0009 (5)	0.0044 (5)
C22	0.0201 (6)	0.0184 (6)	0.0251 (7)	0.0082 (5)	0.0005 (5)	0.0035 (5)
C23	0.0308 (8)	0.0219 (6)	0.0227 (7)	0.0030 (6)	0.0085 (6)	0.0062 (5)
C24	0.0240 (7)	0.0240 (6)	0.0214 (7)	-0.0010 (5)	0.0042 (6)	0.0000 (5)
C25	0.0173 (6)	0.0368 (8)	0.0188 (7)	0.0079 (6)	0.0023 (5)	0.0067 (6)
C26	0.0270 (7)	0.0368 (8)	0.0248 (8)	0.0171 (6)	0.0062 (6)	0.0063 (6)
C27	0.0319 (8)	0.0252 (7)	0.0251 (8)	0.0134 (6)	0.0066 (6)	0.0064 (6)
C28	0.0310 (8)	0.0207 (6)	0.0292 (8)	-0.0008 (6)	0.0098 (6)	0.0029 (6)
C29	0.0236 (7)	0.0277 (7)	0.0273 (8)	-0.0043 (6)	0.0067 (6)	-0.0020 (6)
C30	0.0181 (7)	0.0452 (9)	0.0260 (8)	0.0088 (6)	0.0038 (6)	0.0062 (7)
C31	0.0267 (8)	0.0452 (9)	0.0327 (9)	0.0189 (7)	0.0088 (7)	0.0099 (7)
C32	0.0324 (8)	0.0326 (7)	0.0284 (8)	0.0173 (6)	0.0054 (6)	0.0112 (6)
C33	0.0195 (6)	0.0177 (5)	0.0209 (7)	0.0045 (5)	0.0050 (5)	-0.0013 (5)
C34	0.0273 (7)	0.0211 (6)	0.0216 (7)	0.0040 (5)	0.0069 (6)	0.0005 (5)
C35	0.0352 (8)	0.0213 (6)	0.0314 (9)	0.0016 (6)	0.0142 (7)	0.0021 (6)
C36	0.0281 (8)	0.0233 (7)	0.0477 (11)	-0.0052 (6)	0.0079 (7)	-0.0034 (7)
C37	0.0286 (8)	0.0302 (8)	0.0425 (10)	-0.0026 (6)	-0.0082 (7)	-0.0029 (7)
C38	0.0256 (7)	0.0227 (6)	0.0301 (8)	0.0011 (5)	-0.0035 (6)	0.0007 (6)
C39	0.0167 (6)	0.0199 (6)	0.0176 (6)	0.0056 (5)	-0.0014 (5)	-0.0001 (5)
C40	0.0157 (6)	0.0238 (6)	0.0232 (7)	0.0040 (5)	0.0001 (5)	-0.0023 (5)
C41	0.0160 (6)	0.0348 (7)	0.0246 (8)	0.0072 (5)	0.0020 (5)	-0.0030 (6)
C42	0.0249 (7)	0.0326 (7)	0.0227 (7)	0.0162 (6)	-0.0043 (6)	-0.0069 (6)
C43	0.0311 (8)	0.0205 (6)	0.0253 (8)	0.0095 (6)	-0.0029 (6)	-0.0031 (5)
C44	0.0244 (7)	0.0198 (6)	0.0221 (7)	0.0061 (5)	0.0024 (6)	0.0011 (5)
C45	0.0194 (6)	0.0199 (6)	0.0149 (6)	0.0044 (5)	0.0026 (5)	0.0031 (5)
C46	0.0217 (7)	0.0217 (6)	0.0181 (7)	0.0042 (5)	0.0033 (5)	0.0023 (5)
C47	0.0205 (7)	0.0297 (7)	0.0252 (8)	0.0011 (5)	-0.0007 (6)	0.0022 (6)
C48	0.0200 (7)	0.0375 (8)	0.0361 (9)	0.0090 (6)	-0.0001 (6)	0.0048 (7)
C49	0.0275 (8)	0.0294 (7)	0.0393 (10)	0.0141 (6)	0.0024 (7)	0.0010 (6)
C50	0.0232 (7)	0.0219 (6)	0.0275 (8)	0.0066 (5)	-0.0007 (6)	-0.0012 (5)
C51	0.0177 (6)	0.0165 (5)	0.0181 (7)	0.0013 (5)	-0.0006 (5)	-0.0014 (5)
C52	0.0247 (7)	0.0247 (6)	0.0228 (7)	0.0091 (5)	0.0020 (6)	0.0019 (5)
C53	0.0370 (9)	0.0279 (7)	0.0241 (8)	0.0125 (6)	-0.0021 (7)	0.0044 (6)
C54	0.0357 (9)	0.0307 (7)	0.0183 (7)	0.0049 (6)	0.0013 (6)	0.0048 (6)

C55	0.0299 (8)	0.0411 (8)	0.0223 (8)	0.0111 (7)	0.0088 (6)	0.0033 (6)
C56	0.0258 (7)	0.0292 (7)	0.0223 (7)	0.0108 (6)	0.0041 (6)	0.0037 (6)
C57	0.0173 (6)	0.0154 (5)	0.0163 (6)	0.0056 (4)	0.0030 (5)	0.0001 (4)
C58	0.0202 (6)	0.0267 (6)	0.0185 (7)	0.0067 (5)	0.0017 (5)	0.0017 (5)
C59	0.0321 (8)	0.0337 (7)	0.0174 (7)	0.0087 (6)	0.0033 (6)	0.0060 (6)
C60	0.0329 (8)	0.0258 (7)	0.0212 (7)	0.0042 (6)	0.0111 (6)	0.0047 (5)
C61	0.0214 (7)	0.0220 (6)	0.0221 (7)	0.0007 (5)	0.0070 (5)	-0.0014 (5)
C62	0.0189 (6)	0.0214 (6)	0.0168 (7)	0.0036 (5)	0.0025 (5)	0.0014 (5)
C63	0.0111 (5)	0.0160 (5)	0.0175 (6)	0.0037 (4)	0.0034 (5)	0.0015 (4)
C64	0.0129 (6)	0.0177 (5)	0.0190 (6)	0.0041 (4)	0.0028 (5)	0.0024 (5)
C65	0.0143 (6)	0.0192 (6)	0.0232 (7)	0.0038 (5)	0.0043 (5)	-0.0021 (5)
C66	0.0153 (6)	0.0275 (6)	0.0174 (7)	0.0042 (5)	0.0035 (5)	-0.0021 (5)
C67	0.0169 (6)	0.0268 (6)	0.0175 (7)	0.0063 (5)	0.0031 (5)	0.0054 (5)
C68	0.0161 (6)	0.0177 (5)	0.0192 (7)	0.0052 (4)	0.0036 (5)	0.0027 (5)
C69	0.0213 (6)	0.0168 (5)	0.0155 (6)	0.0056 (5)	0.0025 (5)	-0.0013 (4)
C70	0.0246 (7)	0.0222 (6)	0.0236 (7)	0.0082 (5)	0.0045 (6)	-0.0014 (5)
C71	0.0366 (9)	0.0311 (8)	0.0389 (10)	0.0197 (7)	0.0084 (7)	-0.0014 (7)
C72	0.0589 (12)	0.0230 (7)	0.0418 (10)	0.0226 (7)	0.0122 (9)	0.0040 (7)
C73	0.0510(11)	0.0175 (6)	0.0427 (10)	0.0089 (7)	0.0200 (8)	0.0051 (6)
C74	0.0301 (8)	0.0190 (6)	0.0321 (8)	0.0066 (5)	0.0134 (6)	0.0014 (5)
C75	0.0154 (6)	0.0174 (5)	0.0175 (6)	0.0024 (4)	0.0034 (5)	0.0023 (5)
C76	0.0200 (7)	0.0256 (7)	0.0289 (8)	0.0050 (5)	0.0001 (6)	-0.0071 (6)
C77	0.0208 (7)	0.0339 (8)	0.0325 (9)	0.0025 (6)	-0.0055 (6)	-0.0099 (6)
C78	0.0159 (6)	0.0346 (7)	0.0277 (8)	0.0061 (6)	-0.0014 (6)	0.0014 (6)
C79	0.0191 (6)	0.0230 (6)	0.0222 (7)	0.0073 (5)	0.0056 (5)	0.0057 (5)
C80	0.0155 (6)	0.0178 (5)	0.0155 (6)	0.0025 (4)	0.0029 (5)	0.0034 (4)
C81	0.0384 (10)	0.0387 (9)	0.0443 (11)	-0.0006 (8)	0.0092 (8)	-0.0065 (8)
C82	0.0371 (9)	0.0226 (7)	0.0287 (9)	0.0052 (6)	0.0030 (7)	-0.0070 (6)
C83	0.0327 (9)	0.0412 (10)	0.0517 (12)	0.0068 (8)	0.0011 (8)	-0.0010 (8)
C84	0.0492 (12)	0.0715 (14)	0.0376 (11)	0.0296 (10)	0.0210 (9)	0.0222 (10)
C85	0.0248 (7)	0.0333 (8)	0.0317 (9)	0.0023 (6)	0.0121 (6)	0.0036 (6)
C86	0.0303 (9)	0.0391 (9)	0.0453 (11)	0.0075 (7)	0.0058 (8)	0.0050 (8)
C87	0.0743 (18)	0.0729 (17)	0.082 (2)	0.0328 (14)	0.0154 (15)	0.0105 (15)
C88	0.0359 (10)	0.0458 (10)	0.0536 (12)	0.0137 (8)	0.0084 (9)	-0.0158 (9)
C89	0.0457 (12)	0.0625 (13)	0.0488 (13)	0.0077 (10)	0.0092 (10)	-0.0198 (10)
C90	0.110 (3)	0.072 (2)	0.180 (4)	0.039 (2)	0.065 (3)	-0.002 (2)
C91	0.0527 (13)	0.0383 (10)	0.0602 (14)	0.0082 (9)	-0.0199 (11)	0.0069 (9)
C92	0.109 (2)	0.0525 (14)	0.089 (2)	0.0184 (15)	0.0442 (19)	0.0199 (14)
Br1	0.0193 (17)	0.0347 (12)	0.0254 (14)	0.0051 (11)	-0.0031 (10)	-0.0002 (8)
C	(8 0)					
Geometric par	ameters (A,)					
Co1-C10		1.8783 (13)	C34–	C35	1.39	5 (2)
Co1—N3		1.9724 (11)	C34–	-H34	0.95	00
Co1—N4		1.9755 (11)	C35–	C36	1.384	4 (2)
Co1—N1		1.9792 (10)	C35–	-H35	0.95	00
Co1—N2		1.9793 (11)	C36–	C37	1.38	6 (3)
Co1—Cl1		2.2988 (3)	C36–	-H36	0.95	00
Co2—C12		1.8756 (14)	C37–	C38	1.39	6 (2)

Co2—N5	1 9700 (11)	С37—Н37	0.9500
Co2—N8	1 9737 (11)	C38—H38	0.9500
$C_0^2 - N_0^2$	1 9777 (11)	C39—C40	1 406 (2)
$C_0 2 = N7$	1 9858 (12)	C39—C44	1 4116 (18)
C_02 — C_12	2 3164 (4)	C40—C41	1 394 (2)
N1-C22	14835(17)	C40—H40	0.9500
N1—C21	1 4855 (17)	C41—C42	1 385 (2)
N1—H1	0.9300	C41—H41	0.9500
N2—C15	1.4847 (17)	C42—C43	1.379 (2)
N2—C14	1.4861 (17)	C42—H42	0.9500
N2—H2	0.9300	C43—C44	1.393 (2)
N3—C19	1.4843 (17)	С43—Н43	0.9500
N3—C20	1.4849 (17)	C44—H44	0.9500
N3—H3	0.9300	C45—C50	1.4048 (19)
N4—C16	1.4791 (18)	C45—C46	1.4061 (19)
N4—C17	1.4860 (17)	C46—C47	1.398 (2)
N4—H4	0.9300	C46—H46	0.9500
N5-C25	1 4842 (17)	C47—C48	1 388 (2)
N5—C24	1.4877 (18)	C47—H47	0.9500
N5—H5	0.9300	C48—C49	1.384 (2)
N6—C27	1.4827 (19)	C48—H48	0.9500
N6-C28	1 4931 (18)	C49—C50	1 393 (2)
N6—H6	0.9300	C49—H49	0.9500
N7—C30	1.4825 (19)	С50—Н50	0.9500
N7—C29	1.4861 (19)	C51—C56	1.404 (2)
N7—H7	0.9300	C51—C52	1.4049 (19)
N8—C32	1.4848 (19)	C52—C53	1.392 (2)
N8—C23	1.4884 (18)	С52—Н52	0.9500
N8—H8	0.9300	C53—C54	1.382 (2)
B1—C33	1.6425 (19)	С53—Н53	0.9500
B1—C39	1.652 (2)	C54—C55	1.379 (2)
B1—C51	1.652 (2)	С54—Н54	0.9500
B1—C45	1.653 (2)	C55—C56	1.386 (2)
B2—C69	1.6431 (18)	С55—Н55	0.9500
B2—C75	1.6503 (19)	С56—Н56	0.9500
B2—C63	1.654 (2)	C57—C58	1.4028 (19)
B2—C57	1.656 (2)	C57—C62	1.4044 (18)
O1—C82	1.216 (2)	C58—C59	1.395 (2)
O2—C85	1.210 (2)	С58—Н58	0.9500
O3—C88	1.209 (2)	C59—C60	1.385 (2)
O4—C91	1.198 (3)	С59—Н59	0.9500
C1—C2	1.192 (5)	C60—C61	1.387 (2)
C1—H1A	0.9500	С60—Н60	0.9500
C2—C3	1.426 (3)	C61—C62	1.3963 (19)
C3—C4	1.3943 (18)	С61—Н61	0.9500
C3—C8	1.3973 (18)	С62—Н62	0.9500
C3—Br1	1.947 (3)	C63—C64	1.4095 (17)
C4—C5	1.4013 (18)	C63—C68	1.4109 (18)
C4—H4A	0.9500	C64—C65	1.3883 (19)

C5—C6	1.3960 (18)	С64—Н64	0.9500
С5—С9	1.4392 (18)	C65—C66	1.394 (2)
C6—C7	1.4000 (17)	С65—Н65	0.9500
С6—Н6А	0.9500	C66—C67	1.3903 (19)
С7—С8	1.3978 (18)	С66—Н66	0.9500
C7—C11	1.4384 (18)	C67—C68	1.3987 (19)
C8—H8A	0.9500	С67—Н67	0.9500
C9—C10	1.2027 (18)	C68—H68	0.9500
C11—C12	1.2007 (19)	C69—C74	1.3997 (19)
C13—C22	1.512 (2)	C69—C70	1.4022 (19)
C13—C14	1.517 (2)	C70—C71	1.392 (2)
C13—H13A	0.9900	С70—Н70	0.9500
C13—H13B	0.9900	C71—C72	1.386 (3)
C14—H14A	0.9900	C71—H71	0.9500
C14—H14B	0.9900	C72—C73	1.381 (3)
C15—C16	1.508 (2)	С72—Н72	0.9500
C15—H15A	0.9900	C73—C74	1.394 (2)
C15—H15B	0.9900	С73—Н73	0.9500
C16—H16A	0.9900	С74—Н74	0.9500
C16—H16B	0.9900	C75—C76	1.4019 (19)
C17—C18	1.514 (2)	C75—C80	1.4072 (17)
C17—H17A	0.9900	C76—C77	1.393 (2)
С17—Н17В	0.9900	С76—Н76	0.9500
C18—C19	1.5197 (19)	C77—C78	1.391 (2)
C18—H18A	0.9900	С77—Н77	0.9500
C18—H18B	0.9900	C78—C79	1.385 (2)
С19—Н19А	0.9900	С78—Н78	0.9500
С19—Н19В	0.9900	C79—C80	1.3956 (18)
C20—C21	1.5094 (19)	С79—Н79	0.9500
C20—H20A	0.9900	С80—Н80	0.9500
C20—H20B	0.9900	C81—C82	1.490 (3)
C21—H21A	0.9900	C81—H81A	0.9800
C21—H21B	0.9900	C81—H81B	0.9800
C22—H22A	0.9900	C81—H81C	0.9800
C22—H22B	0.9900	C82—C83	1.485 (2)
C23—C24	1.502 (2)	C83—H83A	0.9800
C23—H23A	0.9900	С83—Н83В	0.9800
С23—Н23В	0.9900	С83—Н83С	0.9800
C24—H24A	0.9900	C84—C85	1.489 (3)
C24—H24B	0.9900	C84—H84A	0.9800
C25—C26	1.515 (2)	C84—H84B	0.9800
C25—H25A	0.9900	C84—H84C	0.9800
C25—H25B	0.9900	C85—C86	1.499 (2)
C26—C27	1.515 (2)	C86—H86A	0.9800
C26—H26A	0.9900	С86—Н86В	0.9800
С26—Н26В	0.9900	С86—Н86С	0.9800
С27—Н27А	0.9900	C87—C88	1.482 (4)
С27—Н27В	0.9900	С87—Н87А	0.9800
C28—C29	1.505 (2)	С87—Н87В	0.9800

C28—H28A	0.9900	С87—Н87С	0.9800
C28—H28B	0.9900	C88—C89	1.496 (3)
С29—Н29А	0.9900	C89—H89A	0.9800
С29—Н29В	0.9900	С89—Н89В	0.9800
C30—C31	1.514 (2)	С89—Н89С	0.9800
C30—H30A	0.9900	C90—C91	1.466 (4)
С30—Н30В	0.9900	С90—Н90А	0.9800
C31—C32	1.518 (2)	С90—Н90В	0.9800
C31—H31A	0.9900	С90—Н90С	0.9800
C31—H31B	0.9900	C91—C92	1.489 (4)
C32—H32A	0.9900	С92—Н92А	0.9800
C32—H32B	0.9900	С92—Н92В	0.9800
C33—C38	1.398 (2)	С92—Н92С	0.9800
C33—C34	1.4053 (19)		
C10—Co1—N3	90.39 (5)	C31—C30—H30A	109.2
C10—Co1—N4	92.33 (5)	N7-C30-H30B	109.2
N3—Co1—N4	92.75 (5)	C31—C30—H30B	109.2
C10-Co1-N1	87.66 (5)	H30A—C30—H30B	107.9
N3—Co1—N1	86.53 (4)	C30—C31—C32	113.79 (13)
N4—Co1—N1	179 27 (5)	C30—C31—H31A	108.8
C10-C01-N2	89 89 (5)	C32—C31—H31A	108.8
N3—Co1—N2	178.99 (4)	C30—C31—H31B	108.8
N4—Co1—N2	86.27 (5)	C32—C31—H31B	108.8
N1 - Co1 - N2	94.45 (5)	H31A—C31—H31B	107.7
C10-Co1-Cl1	178 32 (4)	N8-C32-C31	111 89 (12)
N3—Co1—Cl1	88.24 (3)	N8—C32—H32A	109.2
N4—Co1—Cl1	88 70 (3)	$C_{31} - C_{32} - H_{32A}$	109.2
N1 - Co1 - Cl1	91.29 (3)	N8—C32—H32B	109.2
N2-Co1-Cl1	91.49 (3)	C31—C32—H32B	109.2
C12-Co2-N5	89.92 (5)	H32A—C32—H32B	107.9
C12— $Co2$ — $N8$	90.84 (5)	C38—C33—C34	115.02 (13)
N5-Co2-N8	86.22 (5)	C38—C33—B1	122.53 (12)
C12—Co2—N6	89.17 (5)	C34—C33—B1	122.23 (12)
N5-Co2-N6	93.72 (5)	C35—C34—C33	123.09 (15)
N8—Co2—N6	179.94 (6)	C35—C34—H34	118.5
C12—Co2—N7	89.23 (5)	C33—C34—H34	118.5
N5—Co2—N7	179.14 (5)	C36—C35—C34	119.77 (15)
N8—Co2—N7	93.66 (5)	C36—C35—H35	120.1
N6—Co2—N7	86.40 (5)	C34—C35—H35	120.1
C12—Co2—Cl2	177.48 (4)	C35—C36—C37	119.17 (14)
N5—Co2—Cl2	89.35 (4)	С35—С36—Н36	120.4
N8—Co2—Cl2	91.52 (4)	С37—С36—Н36	120.4
N6—Co2—Cl2	88.47 (4)	C36—C37—C38	120.08 (16)
N7—Co2—Cl2	91.50 (4)	С36—С37—Н37	120.0
C22—N1—C21	111.44 (10)	С38—С37—Н37	120.0
C22—N1—Co1	118.63 (8)	C37—C38—C33	122.86 (15)
C21—N1—Co1	107.18 (8)	С37—С38—Н38	118.6
C22—N1—H1	106.3	С33—С38—Н38	118.6
C21—N1—H1	106.3	C40—C39—C44	114.61 (12)

Co1—N1—H1	106.3	C40—C39—B1	123.29 (11)
C15—N2—C14	111.18 (11)	C44—C39—B1	122.10 (12)
C15—N2—Co1	107.35 (8)	C41—C40—C39	122.97 (13)
C14—N2—Co1	119.67 (9)	C41—C40—H40	118.5
C15—N2—H2	105.9	С39—С40—Н40	118.5
C14—N2—H2	105.9	C42—C41—C40	120.40 (14)
Co1—N2—H2	105.9	C42—C41—H41	119.8
C19—N3—C20	110.57 (10)	C40—C41—H41	119.8
C19—N3—Co1	120.30 (9)	C43—C42—C41	118.57 (13)
C20—N3—Co1	107.98 (8)	C43—C42—H42	120.7
C19—N3—H3	105.6	C41—C42—H42	120.7
C20—N3—H3	105.6	C42—C43—C44	120.81 (13)
Co1—N3—H3	105.6	C42—C43—H43	119.6
C16—N4—C17	110.99 (10)	C44—C43—H43	119.6
C16—N4—Co1	107.97 (8)	C43—C44—C39	122.63 (14)
C17—N4—Co1	118.43 (8)	C43—C44—H44	118.7
C16—N4—H4	106.2	C39—C44—H44	118.7
C17—N4—H4	106.2	C50—C45—C46	115.03 (12)
Co1—N4—H4	106.2	C50-C45-B1	120.59 (12)
C25—N5—C24	111.17 (11)	C46—C45—B1	123.65 (11)
C25—N5—Co2	119.50 (9)	C47—C46—C45	122.58 (13)
C24—N5—Co2	108.19 (9)	C47—C46—H46	118.7
C25—N5—H5	105.7	C45—C46—H46	118.7
C24—N5—H5	105.7	C48—C47—C46	120.18 (14)
Co2—N5—H5	105.7	С48—С47—Н47	119.9
C27—N6—C28	110.89 (11)	С46—С47—Н47	119.9
C27—N6—Co2	119.69 (9)	C49—C48—C47	119.04 (14)
C28—N6—Co2	107.78 (9)	C49—C48—H48	120.5
С27—N6—H6	105.8	C47—C48—H48	120.5
C28—N6—H6	105.8	C48—C49—C50	120.04 (14)
Со2—N6—H6	105.8	C48—C49—H49	120.0
C30—N7—C29	111.23 (12)	С50—С49—Н49	120.0
C30—N7—Co2	118.84 (9)	C49—C50—C45	123.10 (14)
C29—N7—Co2	107.59 (9)	С49—С50—Н50	118.5
C30—N7—H7	106.1	C45—C50—H50	118.5
C29—N7—H7	106.1	C56—C51—C52	114.81 (13)
Co2—N7—H7	106.1	C56-C51-B1	122.44 (12)
C32—N8—C23	111.27 (11)	C52—C51—B1	122.65 (12)
C32—N8—Co2	119.11 (10)	C53—C52—C51	122.80 (14)
C23—N8—Co2	107.87 (9)	С53—С52—Н52	118.6
C32—N8—H8	105.9	С51—С52—Н52	118.6
C23—N8—H8	105.9	C54—C53—C52	120.21 (14)
Co2—N8—H8	105.9	С54—С53—Н53	119.9
C33—B1—C39	108.24 (11)	С52—С53—Н53	119.9
C33—B1—C51	109.11 (11)	C55—C54—C53	118.82 (14)
C39—B1—C51	110.31 (10)	С55—С54—Н54	120.6
C33—B1—C45	111.16 (10)	С53—С54—Н54	120.6
C39—B1—C45	112.18 (11)	C54—C55—C56	120.55 (15)
C51—B1—C45	105.80 (11)	С54—С55—Н55	119.7

C69—B2—C75	112.19 (10)	С56—С55—Н55	119.7
C69—B2—C63	106.59 (10)	C55—C56—C51	122.82 (14)
C75—B2—C63	110.50 (10)	С55—С56—Н56	118.6
C69—B2—C57	111.05 (10)	С51—С56—Н56	118.6
C75—B2—C57	106.73 (10)	C58—C57—C62	114.62 (12)
C63—B2—C57	109.81 (10)	С58—С57—В2	123.68 (12)
C2—C1—H1A	180.0	С62—С57—В2	121.70 (11)
C1—C2—C3	179.3 (4)	C59—C58—C57	122.79 (14)
C4—C3—C8	120.41 (12)	С59—С58—Н58	118.6
C4—C3—C2	119.67 (17)	С57—С58—Н58	118.6
C8—C3—C2	119.91 (17)	C60—C59—C58	120.61 (14)
C4—C3—Br1	120.24 (12)	С60—С59—Н59	119.7
C8—C3—Br1	119.31 (12)	С58—С59—Н59	119.7
C3—C4—C5	120.10 (12)	C59—C60—C61	118.73 (14)
C3—C4—H4A	120.0	С59—С60—Н60	120.6
C5—C4—H4A	120.0	С61—С60—Н60	120.6
C6—C5—C4	119.17 (11)	C60—C61—C62	119.72 (13)
C6—C5—C9	119.98 (12)	С60—С61—Н61	120.1
C4—C5—C9	120.85 (12)	С62—С61—Н61	120.1
C5—C6—C7	121.03 (12)	C61—C62—C57	123.53 (13)
С5—С6—Н6А	119.5	C61—C62—H62	118.2
С7—С6—Н6А	119.5	С57—С62—Н62	118.2
C8—C7—C6	119.32 (12)	C64—C63—C68	114.59 (12)
C8—C7—C11	122.29 (12)	C64—C63—B2	121.56 (11)
C6—C7—C11	118.26 (12)	C68—C63—B2	123.83 (11)
C3—C8—C7	119.94 (12)	C65—C64—C63	123.44 (12)
С3—С8—Н8А	120.0	C65—C64—H64	118.3
С7—С8—Н8А	120.0	С63—С64—Н64	118.3
C10—C9—C5	178.08 (14)	C64—C65—C66	120.20 (12)
C9—C10—Co1	173.79 (12)	С64—С65—Н65	119.9
C12—C11—C7	169.37 (14)	С66—С65—Н65	119.9
C11—C12—Co2	171.04 (12)	C67—C66—C65	118.55 (13)
C22-C13-C14	113.56 (12)	С67—С66—Н66	120.7
С22—С13—Н13А	108.9	С65—С66—Н66	120.7
C14—C13—H13A	108.9	C66—C67—C68	120.43 (12)
С22—С13—Н13В	108.9	С66—С67—Н67	119.8
C14—C13—H13B	108.9	С68—С67—Н67	119.8
H13A—C13—H13B	107.7	C67—C68—C63	122.75 (12)
N2-C14-C13	111.62 (11)	С67—С68—Н68	118.6
N2—C14—H14A	109.3	С63—С68—Н68	118.6
C13—C14—H14A	109.3	C74—C69—C70	115.08 (12)
N2—C14—H14B	109.3	С74—С69—В2	121.57 (12)
C13—C14—H14B	109.3	C70—C69—B2	122.61 (12)
H14A—C14—H14B	108.0	C71—C70—C69	122.65 (14)
N2—C15—C16	106.66 (11)	С71—С70—Н70	118.7
N2—C15—H15A	110.4	С69—С70—Н70	118.7
C16—C15—H15A	110.4	C72—C71—C70	120.37 (15)
N2—C15—H15B	110.4	С72—С71—Н71	119.8
C16—C15—H15B	110.4	С70—С71—Н71	119.8

H15A—C15—H15B	108.6	C73—C72—C71	118.77 (14)
N4—C16—C15	107.56 (11)	С73—С72—Н72	120.6
N4—C16—H16A	110.2	С71—С72—Н72	120.6
C15-C16-H16A	110.2	C72—C73—C74	120.15 (15)
N4—C16—H16B	110.2	С72—С73—Н73	119.9
C15-C16-H16B	110.2	С74—С73—Н73	119.9
H16A—C16—H16B	108.5	C73—C74—C69	122.97 (15)
N4—C17—C18	111.90 (10)	С73—С74—Н74	118.5
N4—C17—H17A	109.2	С69—С74—Н74	118.5
С18—С17—Н17А	109.2	C76—C75—C80	114.78 (12)
N4—C17—H17B	109.2	С76—С75—В2	122.69 (12)
С18—С17—Н17В	109.2	С80—С75—В2	122.12 (11)
H17A—C17—H17B	107.9	C77—C76—C75	122.97 (13)
C17—C18—C19	114.00 (11)	С77—С76—Н76	118.5
C17—C18—H18A	108.8	С75—С76—Н76	118.5
C19—C18—H18A	108.8	C78—C77—C76	120.38 (14)
C17—C18—H18B	108.8	С78—С77—Н77	119.8
C19—C18—H18B	108.8	С76—С77—Н77	119.8
H18A—C18—H18B	107.6	C79—C78—C77	118.62 (13)
N3—C19—C18	111.67 (11)	С79—С78—Н78	120.7
N3—C19—H19A	109.3	С77—С78—Н78	120.7
С18—С19—Н19А	109.3	C78—C79—C80	120.13 (13)
N3—C19—H19B	109.3	С78—С79—Н79	119.9
C18—C19—H19B	109.3	С80—С79—Н79	119.9
H19A—C19—H19B	107.9	C79—C80—C75	123.08 (12)
N3—C20—C21	107.42 (11)	С79—С80—Н80	118.5
N3—C20—H20A	110.2	С75—С80—Н80	118.5
C21—C20—H20A	110.2	С82—С81—Н81А	109.5
N3—C20—H20B	110.2	C82—C81—H81B	109.5
C21—C20—H20B	110.2	H81A—C81—H81B	109.5
H20A—C20—H20B	108.5	С82—С81—Н81С	109.5
N1—C21—C20	106.89 (10)	H81A—C81—H81C	109.5
N1—C21—H21A	110.3	H81B—C81—H81C	109.5
C20—C21—H21A	110.3	O1—C82—C83	121.67 (17)
N1—C21—H21B	110.3	O1—C82—C81	121.55 (17)
C20—C21—H21B	110.3	C83—C82—C81	116.78 (16)
H21A—C21—H21B	108.6	С82—С83—Н83А	109.5
N1—C22—C13	112.21 (11)	С82—С83—Н83В	109.5
N1—C22—H22A	109.2	H83A—C83—H83B	109.5
C13—C22—H22A	109.2	С82—С83—Н83С	109.5
N1—C22—H22B	109.2	H83A—C83—H83C	109.5
C13—C22—H22B	109.2	H83B—C83—H83C	109.5
H22A—C22—H22B	107.9	С85—С84—Н84А	109.5
N8—C23—C24	107.16 (11)	C85—C84—H84B	109.5
N8—C23—H23A	110.3	H84A—C84—H84B	109.5
C24—C23—H23A	110.3	C85—C84—H84C	109.5
N8—C23—H23B	110.3	H84A—C84—H84C	109.5
C24—C23—H23B	110.3	H84B—C84—H84C	109.5
H23A—C23—H23B	108.5	O2—C85—C84	121.66 (17)

N5-C24-C23	107.02 (11)	O2—C85—C86	122.14 (17)
N5—C24—H24A	110.3	C84—C85—C86	116.21 (15)
C23—C24—H24A	110.3	С85—С86—Н86А	109.5
N5—C24—H24B	110.3	C85—C86—H86B	109.5
C23—C24—H24B	110.3	H86A—C86—H86B	109.5
H24A—C24—H24B	108.6	С85—С86—Н86С	109.5
N5-C25-C26	111.35 (12)	H86A—C86—H86C	109.5
N5—C25—H25A	109.4	H86B—C86—H86C	109.5
С26—С25—Н25А	109.4	С88—С87—Н87А	109.5
N5-C25-H25B	109.4	С88—С87—Н87В	109.5
С26—С25—Н25В	109.4	Н87А—С87—Н87В	109.5
H25A—C25—H25B	108.0	С88—С87—Н87С	109.5
C27—C26—C25	114.01 (12)	Н87А—С87—Н87С	109.5
C27—C26—H26A	108.7	H87B—C87—H87C	109.5
C25—C26—H26A	108.7	O3—C88—C87	122.1 (2)
С27—С26—Н26В	108.7	O3—C88—C89	119.9 (2)
С25—С26—Н26В	108.7	C87—C88—C89	118.0 (2)
H26A—C26—H26B	107.6	С88—С89—Н89А	109.5
N6-C27-C26	111.46 (12)	С88—С89—Н89В	109.5
N6—C27—H27A	109.3	H89A—C89—H89B	109.5
С26—С27—Н27А	109.3	С88—С89—Н89С	109.5
N6—C27—H27B	109.3	H89A—C89—H89C	109.5
С26—С27—Н27В	109.3	H89B—C89—H89C	109.5
H27A—C27—H27B	108.0	С91—С90—Н90А	109.5
N6-C28-C29	107.21 (12)	С91—С90—Н90В	109.5
N6—C28—H28A	110.3	H90A—C90—H90B	109.5
C29—C28—H28A	110.3	С91—С90—Н90С	109.5
N6-C28-H28B	110.3	Н90А—С90—Н90С	109.5
C29—C28—H28B	110.3	Н90В—С90—Н90С	109.5
H28A—C28—H28B	108.5	O4—C91—C90	123.3 (3)
N7—C29—C28	107.56 (12)	O4—C91—C92	121.1 (3)
N7—C29—H29A	110.2	C90—C91—C92	115.5 (2)
С28—С29—Н29А	110.2	С91—С92—Н92А	109.5
N7—C29—H29B	110.2	С91—С92—Н92В	109.5
C28—C29—H29B	110.2	H92A—C92—H92B	109.5
H29A—C29—H29B	108.5	С91—С92—Н92С	109.5
N7—C30—C31	111.89 (13)	H92A—C92—H92C	109.5
N7—C30—H30A	109.2	H92B—C92—H92C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N5—H5···Cl2 ⁱ	0.93	2.48	3.2377 (12)	139.
N6—H6…O3	0.93	2.15	2.9440 (19)	143.
N7—H7…O2	0.93	2.11	2.9894 (17)	157.
N8—H8…O1	0.93	2.03	2.8730 (17)	149.
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$.				

Fig. 1

